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Supervised Detection of Regulatory Motifs in

DNA Sequences

Sunduz Keles, Mark J. van der Laan, Sandrine Dudoit, Biao Xing, and
Michael B. Eisen

Abstract

Identification of transcription factor binding sites (regulatory motifs) is a major inter-
est in contemporary biology. We propose a new likelihood based method, COMODE, for
identifying structural motifs in DNA sequences. Commonly used methods (e.g. MEME,
Gibbs motif sampler) model binding sites as families of sequences described by a position
weight matrix (PWM) and identify PWMs that maximize the likelihood of observed se-
quence data under a simple multinomial mixture model. This model assumes that the
positions of the PWM correspond to independent multinomial distributions with four cell
probabilities. We address supervising the search for DNA binding sites using the informa-
tion derived from structural characteristics of protein-DNA interactions. We extend the
simple multinomial mixture model to a constrained multinomial mixture model by incor-
porating constraints on the information content profiles or on specific parameters of the
motif PWMs. The parameters of this extended model are estimated by maximum likeli-
hood using a nonlinear constraint optimization method. Likelihood-based cross-validation
is used to select model parameters such as motif width and constraint type. The per-
formance of COMODE is compared with existing motif detection methods on simulated
data that incorporate real motif examples from Saccharomyces cerevisiae. The proposed
method is especially effective when the motif of interest appears as a weak signal in the
data. Some of the transcription factor binding data of Lee et al. (2002) were also analyzed
using COMODE and biologically verified sites were identified.

KEYWORDS: DNA sequence, co-regulated genes, transcription factor, regulatory motif,
mixture model, position weight matrix, structured motif, information content, entropy,
nonlinear constraint maximization



1 Introduction

Transcription factors control the expression of specific genes by binding to short
unique families of sequences - referred to here as binding sites or motifs. Description
of these binding sites is critical in understanding the biological content of genome se-
quences, and is an important problem in contemporary computational biology. Many
methods have been developed for this purpose (reviewed in Stormo (2000)). Here,
we focus on methods that use a two-component multinomial mixture model (first
introduced by Lawrence and Reilly (1990)) for the description of nucleotides (A, C,
G, T) in a DNA sequence. In this model, one component corresponds to bases in
the background sequences and the second component corresponds to bases in the
motif. In such methods (e.g. Lawrence and Reilly (1990); MEME of Bailey and
Elkan (1995a); the Gibbs motif sampler of Lawrence et al. (1993); Hertz and Stormo
(1999); Tavazoie et al. (1999); Hughes et al. (2000); Liu et al. (2001)), transcription
factor binding sites are generally represented by a position weight matrix (PWM)- a
4×W matrix where position (j, w) represents the frequency of observing nucleotide
j at position w of the DNA motif.

PWMs are attractive for use in modeling motifs because they are mathematically
and computationally simple to handle. In essence, each column in a PWM corre-
sponds to a multinomial distribution with four cell probabilities that represent the
nucleotides {A,C,G,T}. A PWM can be easily estimated from a set of aligned se-
quences by simply counting the occurrences of each nucleotide at each position in the
aligned sequences. Methods such as those listed above can be used to infer PWMs
from unaligned sequences. There is also a straightforward relationship between the
score of a given sequence against a particular PWM (the product of the probabilities
of the observed nucleotides at each position of the motif) and the binding energy of
the associated protein bound to the sequence (Berg and von Hippel, 1987). Although
there are some obvious limitations in PWMs, such as the inability to consider in-
teractions among positions in computing the likelihood that a particular sequence is
bound by a transcription factor, they have proven to be very effective in describing
the families of sequences bound by a given transcription factor and have considerable
predictive power (Stormo, 2000).

In addition to the base specificities represented by the matrix values, PWMs can
also be summarized by the information content profile (Schneider et al., 1986). The
information content at a position w is given by

IC(w) = log2 J +
J∑

j=1

pwj log2 pwj = log2 J − Entropy(w),

and can be thought as a measure of how conserved position w is. The information
content is measured in bits and for J = 4, it takes on values between 0 and 2 bits,
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Figure 1: Examples of information content profiles. Information content across posi-
tions of GAL4 and ABF1 binding sites in Saccharomyces cerevisiae and PURR and
CRP binding sites in Escherichia coli.

which correspond to a random site (all nucleotides have equal probability at that posi-
tion) and to a deterministic site (probability of one of the nucleotides at that position
is 1 and the rest are 0), respectively. Examples of information content profiles for
several transcription factors are shown in Figure 1. For our purposes, it is important
to note that PWMs describing factors with very different base specificities can have
similar information content profile - see, for example, GAL4 and ABF1 in Figure 1.
A recent paper by Mirny and Gelfand (2002) motivates further consideration of infor-
mation content profiles. Using proteins for which both a three-dimensional structure
of the protein bound to DNA and a family of experimentally verified bound sequences
were available, these authors showed that the information content at each position
in the motif computed from the bound sequences is proportional to the number of
contacts between the protein and that base pair observed in the crystal structure.
Or, more simply put, there is a direct relationship between the structural footprint
of a transcription factor on DNA and the information content profile of the corre-

2 Statistical Applications in Genetics and Molecular Biology Vol. 2 [2003], No. 1, Article 5

http://www.bepress.com/sagmb/vol2/iss1/art5



sponding motif. An important corollary of this intuitively sensible (and we believe
general) observation is that the motifs bound by proteins with structurally similar
DNA binding domains should have similar information content profiles, since struc-
turally related transcription factors generally have similar structural footprints on
DNA (Eisen, 2003).

In this paper, we develop a new motif detection method, COMODE, that builds
on this notion of family-specific information content profile. COMODE stands for
COnstrained MOtif DEtection. Specifically, our method performs supervised searches
for motifs whose information content profiles are constrained to match a particular
user-specified profile or family of profiles. The proposed framework is quite general in
the sense that it allows any type of constraints on motif PWMs. Some examples in-
clude enforcing nucleotide biases, or high versus low information contents at various
positions. The underlying statistical model is an extension of the standard two-
component multinomial mixture model, and the parameters of the model, including
the PWM and parameters of the information content profile, are estimated with max-
imum likelihood, either using the Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977) or Sequential Quadratic Programming methods (SQP) (see Bazaraa
et al., 1979, for an introduction). We use likelihood-based cross-validation to select
model parameters such as motif width and profile type. Simulations are performed
to compare the performance of the proposed method COMODE with simple un-
constrained motif models that are building blocks of the popular motif detecting
methods such as MEME (Bailey and Elkan, 1995a). The results illustrate many ad-
vantages of COMODE including detection of weak but structured motifs, robustness
against model misspecification, and high small sample size relative efficiency. We
have also analyzed some of the ChIP (chromatin immunoprecipitation) data by Lee
et al. (2002). In this work, the unsupervised motif finding method MEME (Bailey
and Elkan, 1995a) was used to analyze sequences that show evidence of binding by
specific transcription factors. By our supervised approach, we were able to identify
some of experimentally verified sites that MEME missed. In addition, we discuss
extensions of COMODE that adapt to the true nature of biological datasets such
as multiple motif occurrences and illustrate these on two cis-regulatory regions from
Drosophila.

The paper is organized as follows: Section 2 reviews the basic multinomial mixture
model for sequence data and Section 3 introduces the constrained motif model and
also addresses parameter estimation and model selection in this model. Results from
simulation studies and data analysis are presented in Sections 4 and 5. We conclude
with a brief discussion of our method.
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2 Motif finding using mixture models: oops and

zoops

We propose two constrained motif models for sequence data that employ constraints
on the information content profile or individual positions of the motif PWM. The
first model is based on the basic one motif per sequence (oops) model introduced by
Lawrence and Reilly (1990). The latter is based on the zero or one motif per sequence
(zoops) model of Bailey and Elkan (1994) and is an extension of the first model. In this
section, we give a brief review of the two basic unconstrained multinomial mixture
models and then we extend them to allow constraints on the motif PWM in the
following section.

2.1 One motif per sequence model: oops

Let Xi = {Xi,k}Li
k=1 denote the data on the i-th sequence with length Li and let

Xi,k ∈ {A, C,G, T} denote the base pair at the k-th position of the i-th sequence.
The observed data will be represented by N i.i.d. random variables {X1, · · · , XN}.
Both oops and zoops models assume that sequence data come from a two component
multinomial mixture model. The first component is the background model, which
assumes that nucleotides at sites that do not contribute to the motif, hence fall into the
background, are independent and identically distributed. The second component is
the motif model and assumes that each nucleotide position of the motif is independent
but not identical, thus each position comes from a different multinomial distribution.
Let J be the number of letters in the sequence alphabet (i.e. J = 4 for DNA as
used here, and J = 20 for protein sequences). We will denote parameters of the

multinomial background distribution by
−→
P 0= (p01, · · · , p0J) and the parameters of

the multiniomial distributions of motif positions by PW = (
−→
P 1, · · · ,

−→
P W ) where

−→
P w =

(pw1, · · · , pwJ) and W represents the width of the motif. We will use P to denote the

set of all parameters in the model, i.e., P includes
−→
P 0 and PW .

Let Yi = {Yi,l}Li
l=1 be the set of indicator variables representing the start site of the

motif in sequence i. We have that
∑Li

l Yi,l = 1,∀i in the oops model. Here, Yi is a
hidden random variable. The start sites are assumed to be uniformly distributed, i.e.,
Pr(Yi,l = 1) = 1/(Li −W + 1), l ∈ {1, · · · , Li −W + 1}. The conditional likelihood
of sequence i given the hidden variables is as follows:

oops:

Pr(Xi | Yi,l = 1,P) =
∏
k∈T l

i

J∏
j=1

p
I(Xi,k=j)
0j

W∏
w=1

J∏
j=1

p
I(Xi,w+l−1=j)
wj ,
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where T l
i = {1, · · · , Li} − {l, l + 1, · · · , l + W − 1} denotes the background sites and

I(.) is the indicator variable.

Since the random variable Y is unobserved, maximum likelihood estimation can be
done by maximizing the expectation of the full data log likelihood given the observed
data with the EM algorithm (Dempster et al., 1977). Note that the full data for
the oops model is (X ,Y) ≡ {(Xi, Yi), i = {1, · · · , N}}. Let Pr be the parameter
estimates after r-th EM iteration, then expected full data log likelihood given the
observed data is as follows up to a constant:

Q(P | Pr)

=
N∑

i=1

Li−W+1∑
l=1

E[I(Yi,l = 1) | Xi,Pr] log Pr(Xi | Yi,l = 1,P)

=
N∑

i=1

Li−W+1∑
l=1

E[I(Yi,l = 1) | Xi,Pr]

∑
k∈T l

i

J∑
j=1

I(Xi,k = j) log p0j

+
W∑

w=1

J∑
j=1

I(Xi,w+l−1 = j) log pwj

}

Define

Nwj =

{∑N
i=1

∑Li−W+1
l=1 E[I(Yi,l = 1) | Xi,Pr]I(Xi,(l+w−1) = j), w 6= 0,∑N

i=1

∑Li−W+1
l=1 E[I(Yi,l = 1) | Xi,Pr]

∑
k∈T l

i
I(Xi,k = j), w = 0.

Then, we have that

Q(P | Pr) =
4∑

j=1

N0j log p0j +
W∑

w=1

4∑
j=1

Nwj log pwj.

The EM update steps in the (r + 1)-th iteration are given by

E-step:

E[I(Yi,l = 1) | Xi,Pr] = Pr(Yi,l = 1 | Xi,Pr) =
Pr(Xi | Yi,l = 1,Pr)∑Li−W+1

s=1 Pr(Xi | Yis = 1,Pr)
.

M-step:

p0j =
N0j∑4
j=1 N0j

, j ∈ {1, · · · , J},

pwj =
Nwj∑4
j=1 Nwj

, j ∈ {1, · · · , J}, w ∈ {1, · · · , W}.
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Note that E-step involves computing the posterior probability of location l being
a motif start site on sequence i given the observed data and the current parameter
estimates. Given the final estimate P̂ of the model parameters, P (Yi,l = 1 | Xi,l, P̂)
can be used to identify the most likely start site in each sequence.

2.2 Zero or one motif per sequence model: zoops

The zoops model extends the oops model by allowing zero or one occurrence of the
motif in each sequence. This extension is obtained by introducing another hidden
random variable Zi which is the indicator variable representing whether sequence i
has exactly one copy of the motif. As in the oops model, let Yi = {Yi,l}Li

l=1 be the set
of indicator variables representing the start site of the motif in sequence i. We have
that

∑Li

l Yi,l ∈ [0, 1],∀i in the zoops model. Note that both Zi and Yi are hidden
random variables. The start sites are again assumed to be uniformly distributed, i.e.,
Pr(Yi,l = 1 | Zi = 1) = 1/(Li − W + 1), l ∈ {1, · · · , Li − W + 1}. The conditional
likelihood of sequence i given the hidden variables is as follows:

zoops:

Pr(Xi | Zi = 1, Yi,l = 1,P) =
∏
k∈T l

i

J∏
j=1

p
I(Xi,k=j)
0j

W∏
w=1

J∏
j=1

p
I(Xi,w+l−1=j)
wj ,

P r(Xi | Zi = 0,P) =

Li∏
k=1

J∏
j=1

p
I(Xi,k=j)
0j .

where T l
i = {1, · · · , Li} − {l, l + 1, · · · , l + W − 1} denotes the background sites

and I(.) is the indicator variable. The full data equals (X ,Y ,Z) ≡ {(Xi, Yi, Zi), i =
{1, · · · , N}} for the zoops model. Let π1 denote the mixing proportion, i.e., propor-
tion of the sequences with the motif. The parameter vector P also includes π in the
zoops model. Let Pr denote the parameter estimates after r-th EM iteration, then
the expected full data likelihood conditional on the observed data is as follows up to
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a constant:

Q(P | Pr) =
N∑

i=1

E[I(Zi = 1) | Xi,P ] log π1

+
N∑

i=1

Li−W+1∑
l=1

E[I(Yi,l = 1, Zi = 1) | Xi,Pr] log Pr(Xi | Zi = 1, Yi,l = 1,P)

+
N∑

i=1

(1− E[I(Zi = 1) | Xi,Pr]) log (1− π1)

+
N∑

i=1

(1− E[I(Zi = 1) | Xi,Pr]) log Pr(Xi | Zi = 0,P).

Define

Nwj =


∑N

i=1

∑Li−W+1
l=1 E[I(Yi,l = 1, Zi = 1) | Xi,Pr], I(Xi,(l+w−1) = j), w 6= 0,∑N

i=1

∑Li−W+1
l=1 E[I(Yi,l = 1, Zi = 1) | Xi,Pr],

∑
k∈T l

i
I(Xi,k = j)

+
∑N

i=1(1− E[I(Zi = 1) | Xi,Pr])
∑Li

k=1 I(Xi,k = j), w = 0.

Then, we have

Q(P | Pr) =
N∑

i=1

E[I(Zi = 1) | Xi,Pr] log π1

+
N∑

i=1

(1− E[I(Zi = 1) | Xi,Pr]) log(1− π1)

+
4∑

j=1

N0j log p0j +
4∑

j=1

W∑
w=1

Nwj log pwj.

The (r + 1)-th update steps are as follows:

E-step:

E[I(Yil=1, Zi = 1) | Xi,Pr]

= Pr(Yi,l = 1, Zi = 1 | Xi,Pr)

=
Pr(Xi | Yi,l = 1, Zi = 1,Pr) π1

1−Li−W+1∑Li−W+1
s=1 Pr(Xi | Yis = 1, Zi = 1) π1

Li−W+1
+ Pr(Xi | Zi = 0,Pr)(1− π1)

,

E(I(Zi = 1) | Xi,Pr) = Pr(Zi = 1 | Xi,Pr)

=

Li−W+1∑
l=1

Pr(Yi,l = 1, Zi = 1 | Xi,Pr).
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M-step

π1 =
1

N

N∑
i=1

Pr(Zi = 1 | Xi,Pr) =
1

N

N∑
i=1

Li−W+1∑
l=1

Pr(Yi,l = 1, Zi = 1 | Xi,Pr),

p0j =
N0j∑4
j=1 N0j

,

pwj =
Nwj∑4
j=1 Nwj

, j ∈ {1, · · · , J}, w ∈ {1, · · · , W}.

Note that

N∑
i=1

Pr(Zi = 0 | Xi,Pr) =
N∑

i=1

(1− Pr(Zi = 1 | Xi,Pr))

= N −
N∑

i=1

Pr(Zi = 1 | Xi,Pr)

= N −
N∑

i=1

Li−W+1∑
l=1

Pr(Yi,l = 1, Zi = 1 | Xi,Pr).

The outputs of the EM algorithm are the estimates of the model parameters, P̂ , and
the posterior location probabilities, i.e., Pr(Yi,l = 1, Zi = 1 | Xi, P̂), and Pr(Zi =

1 | Xi, P̂), i = {1, ..., N}, l = {1, ..., Li − W + 1}. As in the oops model, these
posterior location probability estimates point out the most likely motif start site in
each sequence.

2.3 Constraints in existing motif detection algorithms

The notion of supervising the motif searches has not been much explored in the regu-
latory motif finding literature. In the early Lawrence and Reilly (1990) paper, authors
consider different motif models for the CRP binding site in E.coli. In particular, they
employ constraints on the parameters of the PWM to enforce palindromicity, AT spe-
cific regions and some other simple constraints in the binding site. Frech et al. (1993)
develop a method that operates under the observation that biological significance is
concentrated in a distinct region which includes a highly conserved consensus core
and extends beyond the core in one or both directions. Even though they do not
use multinomial mixture models to model sequence data, their method roughly cor-
responds to searching for motifs with a high information core and lower information
positions beyond the core in one or more directions. Some of the recent methods
also provide ad hoc ways of enforcing palindromicity to the motifs (Bailey and Elkan,
1995a; Liu et al., 2001) or allowing motifs to have two conserved blocks separated by
short background site (Liu et al., 2001).
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LocationLocationLocation

Figure 2: Examples of information content profiles. (A) and (B) roughly correspond
with high-low-high information content profiles and mirror images (D) and (E) of
these correspond to low-high-low information content profiles. Figures (C) and (F)
put order constraints on the information content at various positions.

3 Motif finding using constrained mixture models:

c.oops and c.zoops

3.1 Mixture of constrained multinomial models

In this section, we extend the unconstrained motif models oops and zoops to allow
constraints on the motif PWMs. We incorporate structural information of the binding
site by constraining the information content profile of the motif PWM. Recall that
the information content at a position w is given by

IC(w) = log2 J +
J∑

j=1

pwj log2 pwj.

We will assume a specific model, IC(w;
−→
θ ), w = {1, · · · , W}, for the information

content IC(w) and parameterize it by
−→
θ . The functional form of IC(w;

−→
θ ) is solely

determined by the constraints we are enforcing on the information content profile.
Figure 2 gives examples of various information content profiles, each of which can
be formulated as constraints on IC(w). For instance Figure 3 is an example from
a family of motifs with high information in the middle and low information towards
the ends. It is parameterized by θ1 and θ2 which denote the information content
of the highest information position and the angle of the line that passes through
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the information content of each position, respectively. We refer to motifs with such
structured information content profiles as structured motifs, and motifs that have
random information content profiles (no specific ordering or clustering of information
content across positions) as unstructured motifs. In particular, one could also have
a completely deterministic information content profile, where the actual values of
IC(w),∀w are known a priori or one could have a specified ordering of information
content at various positions. As an example, the information content profile of the
ABF1 site given in Figure 1 can be viewed as a high-low-high information content
profile or can be represented by more restrictive constraints such as

IC(1) = IC(2) = IC(10) = IC(11) = IC(12) = θ1 ≥ IC(3) = IC(4) = θ2

≥ IC(5) = IC(6) = IC(7) = IC(8) = IC(9) = θ3,

where the whole information content profile is parameterized by three parameters,
(θ1, θ2,θ3). This particular ordering corresponds to equally conserved first two and
last three positions and less conserved middle positions.

w∗
w

θ1
θ2

IC(w)

1 W

Figure 3: Example of a parametrized information content profile for a structured
motif. Motif families with this type of information content profiles contain high in-
formation in the middle and lower information towards the ends. Information content
at position w equals: IC(w; θ1, θ2) = θ1 − |w − w∗| tan θ2.

Note that if we take a particular PWM with any of the information content profiles
in Figure 2 and permute its columns, the total information content will not change;
however, the specific shape of the information content profile would be destroyed. The
oops and zoops models are unsupervised methods and do not enforce any particular
information content profile on the motif and as a result the are unable to distinguish
between motifs with specific information content profiles. Our supervised method
COMODE extends these models in a way that allows incorporation of information

10 Statistical Applications in Genetics and Molecular Biology Vol. 2 [2003], No. 1, Article 5
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regarding the structure of the information content profile. It is worth noting that
constraints on the information content profile are global constraints, however there
might be cases where simply biasing of certain positions in the motif towards certain
nucleotides is required. Specifically, if one is expecting, say, a T rich region in the
motif, then the probabilities of nucleotide T at these positions could be forced to be
greater than a threshold, i.e., pw4 > 0.7. Similarly, it is straightforward to enforce
symmetry or palindromicity constraints with this method.

In the previous section, we reviewed the unconstrained oops and zoops that model
background sites using a 0th order Markov chain. Recent trend is to model back-
ground sites by a higher order Markov chain and make the order flexible by specifying
it as a user defined parameter (Liu et al., 2001). Moreover, more flexible approaches
such as allowing the background distribution to be estimated from an independent
dataset (such as all intergenic regions of the organism of the interest) with the speci-
fied order on the Markov chain or from the dataset to be searched for motifs a priori
are pursued (Liu et al., 2001) and shown to be useful. We also follow this approach
and allow the background model to be a Markov chain with user defined order and
estimate the corresponding transition matrix and the starting state probabilities sep-
arately based on either the input sequences or the intergenic regions of the organism
of interest. Then, the parameters of the background distribution are fixed at these
estimated values.

We will refer to these resulting new models with constraints on the PWM as c.oops
and c.zoops. Note that with these new models we still have the same likelihood rep-
resentation, however the parameters of the PWM now lie in a reduced space and this
reduction is determined by the type of constraints employed either on the information
content profile or the individual multinomial probabilities of PWM.

3.2 Maximum likelihood estimation in constrained motif mod-
els

Maximum likelihood estimation in the unconstrained motif models involves a standard
application of the EM algorithm to a two component multinomial mixture model.
Both E and M steps of the EM algorithm have closed form solutions in such models.
However, in our constrained motif model the M-step does not have a closed form
solution. For this purpose, we discuss two approaches for maximizing the likelihood.
The first one relies on the EM algorithm and solves a nonlinear optimization problem
at every M-step. The second approach directly applies a nonlinear optimization
method to maximize the the observed data likelihood. We noticed that for large
problems (i.e. number of sequences > 20 and length of each sequence > 100), the
latter method is substantially faster. In particular, when the enforced constraints are
complex (i.e. specific ordering on the information content profile), the latter approach
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performs about 5 times as fast as the former approach (based on 30 sequences of size
600 base pairs). Next, we describe these two approaches in details.

3.2.1 Using the EM algorithm

For the new constrained models c.oops and c.zoops, the E-step stays the same as the
unconstrained oops and zoops E-step. The only modification required is in the M-step
when updating the parameters of the motif PWM. Recall that we maximize the ex-
pected conditional log likelihood over PWM parameters PW and information content

profile parameters,
−→
θ , and we are not dealing with the background distribution. Let

r denote the r-th EM iteration and define

ζ l
i =

{
E[I(Yi,l = 1) | Xi,Pr] in c.oops,
E[I(Yi,l = 1, Zi = 1) | Xi,Pr] in c.zoops,

where Pr refers to the parameter estimates after the r-th iteration. Let

Nwj =
N∑

i=1

Li−W+1∑
l=1

ζ l
iI(Xi,l+w−1 = j), for w = 1 · · · , W.

Then, the M-step at iteration (r + 1) for the c.oops and c.zoops models requires
solving the following maximization problem (G):

max
pwj

W∑
w=1

J∑
j=1

Nwj log pwj

subject to

2 +
J∑

j=1

pwj log2 pwj = IC(w,
−→
θ ), w = 1, · · · , W, (1)

J∑
j=1

pwj = 1, w = 1, · · · , W,

pwj ≥ 0, j = 1, · · · , J ; w = 1, · · · , W.

Here, constraint (1) is an information content profile specific constraint, hence this
constraint will change depending on the information content profile that the motif
model assumes. The last two constraints are typical multinomial probability con-
straints that one also has in the unconstrained motif models. This is the most generic
form of the M-step for these constrained information content profile models. To be
more concrete, we will give two examples of such constrained information content
profiles. Let the motif model follow the information content profile given in Figure 3,
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then the M-step maximization problem can be formulated as (A):

max
pwj

W∑
w=1

J∑
j=1

Nwj log pwj

subject to

2 +
J∑

j=1

pwj log2 pwj = θ1 − δ(w,w∗) tan θ2, w = 1, · · · , W,

J∑
j=1

pwj = 1, w = 1, · · · , W,

pwj ≥ 0, j = 1, · · · , J ; w = 1, · · · , W.

where δ(w, w∗) = |w − w∗|. Note that if we want to enforce this information content
profile and not allow mirror images of it, it is sufficient to ensure that θ2 is strictly
positive. In this maximization problem we have to solve for all motif parameters
simultaneously, namely for PW , θ1, θ2. As a second example, we will assume that the
information content at all positions are known, i.e., we have a priori given information
content profile. Then, the corresponding M-step is an easier optimization problem
since we can maximize over each position in the motif separately. We have the
following maximization problem for each position w separately (B):

max
pwj

J∑
j=1

Nwj log pwj

subject to

2 +
J∑

j=1

pwj log pwj = IC(w),

J∑
j=1

pwj = 1,

pwj ≥ 0, j = 1, · · · , J,

where IC(w) is just a constant, w = 1, · · · , W . The maximization problems (A) and
(B) are nonlinear constraint optimization problems without closed form solutions.
We use a state of the art nonlinear optimization method called Sequential Quadratic
Programming (SQP) to solve these. Details of this method will be given in the next
subsection.

3.2.2 Using optimization techniques for nonlinear constraint problems

The EM algorithm is generally appealing since it guarantees convergence to a local
maximum as long as the likelihood is increasing at every iteration. Although the
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convergence is slow, this is still favorable if the expectation and maximization steps
are easy to compute, i.e., the M-step has a closed form solution. We have shown in
the previous subsection that maximum likelihood estimation in the constrained motif
models can be done with the EM algorithm by solving a nonlinear constraint problem
at every M-step. However, this approach could get computationally intensive and slow
since it boils down to solving as many nonlinear problems as the number of iterations
it takes the EM algorithm to converge. As an alternative, one can directly work with
the observed data likelihood and solve a single nonlinear constraint problem. Define

B(i, l) =
1

Li −W + 1

∏
k∈T l

i

J∏
j=1

p
I(Xi,k=j)
0j ,

C(i) =

Li∏
k=1

J∏
j=1

p
I(Xi,k=j)
0j .

Here, B(i, l) represents the likelihood of the sites contributing to the background
given that the motif start site is l in sequence i, and C(i) represents the likelihood
of sequence i under the background model. This representation is given for a 0-th
order Markov background model, however it is straightforward to adapt it to higher
order background models. Then, the likelihood of observation i in the c.zoops model
is given by

Pr(Xi | P) = π1

Li−W+1∑
l=1

B(i, l)
W∏

w=1

J∏
j=1

p
I(Xi,w+l−1=j)
w,j + (1− π1)C(i),

Note that we do not have the term (1− π1)C(i) in the c.oops model. Then, we have
the following nonlinear constraint maximization problem

max
pwj ,π1

N∑
i=1

log P (Xi | P)

subject to

2 +
J∑

j=1

pwj log2 pwj = IC(w,
−→
θ ), w = 1, · · · , W, (1)

J∑
j=1

pwj = 1, w = 1, · · · , W,

pwj ≥ 0, j = 1, · · · , J ; w = 1, · · · , W,

0 ≤ π1 ≤ 1.

Nonlinear constraint problems are a well studied topic of the optimization litera-
ture. We refer to Bazaraa et al. (1979) for an overview and analysis of such methods.
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In our application, we used the NAG Fortran subroutine E04UCF to solve the encoun-
tered nonlinear constraint problems. This subroutine minimizes (hence maximizes
the negative of) a given smooth function subject to constraints. The constraints that
can be handled are quite general and include simple upper and lower bounds, lin-
ear constraints or smooth nonlinear constraints on the parameters of the PWM. The
underlying method that E04UCF employs is a Sequential Quadratic Programming
(SQP) algorithm. SQP is a generalization of Newton’s method for unconstrained
optimization and is applied to a Lagrangian function in the context of constrained
optimization. Briefly, the main idea is to replace the objective function with its
quadratic approximation and the constraint functions by their linear approximations.
A detailed overview on sequential quadratic programming can be found in Boggs and
Tolle (1995). Moreover, details on the specific implementation of E04UCF are available
in the NAG documentation (NAG, 1998).

3.2.3 Starting values for the algorithms

We will firstly discuss the rationale for our method of choosing starting values for the
EM algorithm. The same method will be employed for choosing starting values of
the SQP algorithm when maximizing the observed data likelihood directly.

The EM algorithm is guaranteed to converge to a local maximum from a given
starting value. Generally, it is wise to run the EM algorithm from multiple starting
values and to choose the result with the highest final likelihood. Bailey and Elkan
(1995b) suggest running the EM algorithm for one step with various starting values
that are constructed by converting width W oligos into PWMs. At each position of
the these starting PWMs, the corresponding nucleotide in the oligo gets probability pc

(typically equal to 0.5) and the rest of the nucleotide probabilities are set to (1−pc)/3.
This is a quick systematic way of constructing starting PWMs and the oligos used are
obtained from the dataset itself. After running the EM algorithm for one step from
all starting values, EM is run till convergence from the starting value with the highest
one step likelihood. In c.oops and c.zoops, the M-step is time wise more expensive
than the oops and zoops M-step since there does not exist a closed form solution.
Hence, we tried to avoid running one step EM for a large number of starting values.
Instead, we considered the following initial likelihood based approach. The likelihood
is evaluated at each of 4W possible starting values (all sequences of width W), and we
refer to these likelihoods as the initial likelihoods. Then, we run the EM algorithm till
convergence for the k starting values that have the highest initial likelihoods, where
k is a user supplied parameter (e.g. a value of k between 10 and 100 works well in
practice).

We compared this initial likelihood based approach with the one-step EM likeli-
hood based approach on 10 simulated datasets. These datasets consisted of N = 50
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sequences of length L = 100, with a structured motif of width W = 6 inserted in each
of them. The simulations were run on 200Mhz Ultrasparc SUN workstations. Table

I.1 I.5 I.10 I.20 I.50 I.100 OS.1 OS.5 OS.10 OS.20

0 0 0 1 3 8 0 0 0 3
14.4 18.86 26.33 51.35 123.54 234.28 152.28 155.94 164.09 183.33
0 0 0 0 2 4 0 0 0 2

13.8 22.23 28.04 42.4 102.08 213.15 150.47 160.75 165.51 179.03
0 0 0 1 2 7 1 2 2 3

14.67 20.44 26.75 52.82 139.51 274.28 147.18 153.1 171.11 190.55
0 0 1 1 7 12 1 2 5 11

21.1 37.75 57.8 98.32 194.59 341.31 152.22 162.87 172.68 183.78
0 1 1 1 1 10 1 2 3 3

14.69 19.7 29.88 44.72 101.72 205.01 149.37 154.33 159.86 172.06
0 0 0 1 2 1 1 4 5 6

14.32 19.36 27.34 49.07 110.27 210.44 156.5 160.73 165.63 177.72
0 1 1 3 4 5 1 1 1 3

14.89 21.22 28.36 49.47 121.88 231.06 144.05 150.62 158.94 181.34
1 1 5 7 14 24 1 1 3 5

14.8 19.03 25.86 40.14 92.59 195.06 153.6 158.67 163.14 177.64
0 0 0 1 4 10 0 3 4 5

14.9 21.78 28.84 43.5 92.02 182.39 155.41 161.58 166.72 182.13
0 0 1 1 4 7 0 1 2 4

14.02 25.34 33.19 52.41 119.66 225.84 152.2 157.27 166.86 185.75

Table 1: Performance of the two starting value strategies on 10 simulated datasets.
I.k refers to the strategy of running c.zoops till convergence from k of the starting
values with the highest initial likelihood. OS.k is the strategy that runs c.zoops till
convergence from k of the starting values with the highest one-step likelihood. Each
row of the table refers to a different data set. The first line of each dataset row
reports the number of starting points that converged to the global maximum out of
k starting points that are used. The second line refers to the run time required for
the implementation of that strategy (in minutes).

1 reports the detailed results for these 10 datasets. I.k refers to the initial likelihood
based method where k is the number of highest initial likelihood starting values for
which EM is run till convergence. Similarly, OS.k refers to the one-step EM likelihood
based approach. For each dataset, the number of starting values that reach the global
maximum out of k and the time requirement in minutes is reported. The first thing
to notice in this table is that running the EM algorithm till convergence from the
starting value with the highest one-step likelihood does not always achieve the global
maximum. Having noticed this, we also observe that with k = 20 the one-step EM
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likelihood approach finds the global maximum for all of the datasets, and the initial
likelihood based approach with k = 50 achieves the same. The initial likelihood based
approach misses the global maximum for one dataset with k = 20. A summary of
the results on 10 datasets is given in Table 2. The first row in this table represents

I.1 I.5 I.10 I.20 I.50 I.100 OS.1 OS.5 OS.10 OS.20
# sets 1 3 5 9 10 10 6 8 8 10
time req. 15.2 22.6 31.2 52.4 119.8 231.3 151.3 157.6 165.5 181.3

Table 2: Summary of the performances of the two starting value strategies. The first
row reports the number of datasets (among 10) for which the global maximum is
found by the corresponding strategy. Second row is the average time requirement (in
minutes) for that strategy.

the number of datasets for which the global maximum was found by each strategy,
and second row reports the average time requirement in minutes for that strategy.
When we compare the time requirements for the two approaches for various k values,
we notice that the initial likelihood based approach with k = 50 achieves the global
maximum for all of the ten datasets and requires approximately 30% less computing
time than the one-step EM likelihood based approach with k = 20. Based on this
limited but suggestive study, we employ the initial likelihood based approach for se-
lecting starting values for the EM algorithm and also allow k to be a user specified
parameter for flexibility.

Similarly, when maximizing the observed data likelihood directly by an SQP
method, we use k starting values determined by the initial likelihood evaluation.

3.3 Model selection with likelihood based cross-validation

One of the main challenges in motif finding is that the width of the motifs are not
known a priori. Most of the available methods search through a specified range of
motif widths and then choose the best width by optimizing a model selection criterion.
This criterion cannot simply be the likelihood value since the likelihood increases with
motif width as the number of free parameters change. In MEME, motif width is chosen
by minimizing a heuristic function based on the likelihood ratio test. As mentioned
in Bailey and Elkan (1995b), this method ignores the fact that the EM algorithm
might have converged to a local minimum and hence the distributional assumptions
on the test statistics that the method relies on will not hold. Moreover, their criteria
tries to adjust for multiple testing in an unusual way by replacing the p-value of the
likelihood ratio test statistics by p-value to the power 1/(# of degrees of freedom).

As our model selection method, we chose likelihood-based cross-validation. Likelihood-
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based cross-validation was used in the context of mixture of normals by Smyth (2000)
to select the number of components in the mixture model. The simulation studies
of Pavlic and van der Laan (2003) showed that likelihood based cross-validation per-
formed well compared to common approaches based on validity functionals such as
Akaike’s information criterion (AIC) (Akaike, 1973; Bozdogan, 2000), Bayesian In-
formation criterion (BIC) (Schwartz, 1978) and ICOMP (Bozdogan, 1993). Recently,
van der Laan et al. (2003) derived a finite sample result that implied the asymptotic
optimality of likelihood-based cross-validation.

The general idea of cross-validation is to divide the total number of observations
into a training and validation set. The training set is used to learn the parameters
of a given model and the validation set is used to evaluate the performance of this
trained model. In the context of likelihood-based cross validation, the performance
assessment is based on the Kulback-Leibler divergence (KL-divergence) that is used as
the loss function. The KL-divergence is a measure of distance between two densities
and is given by

DKL(f, g) =

∫
log

(
f(x)

g(x)

)
f(x)dx,

for two densities f and g. We refer to van der Laan et al. (2003) for an overview of
the methodology and briefly outline V−fold likelihood-based cross-validation in the
motif finding context:

• STEP I: Divide the dataset into V disjoint sets of approximately the same size
(nv).

• STEP II: For each motif model k ∈ {1, · · · , K} (e.g. K different motif widths),
perform the following:

– For each v ∈ {1, · · · , V }, let Vv denote the observations in the v-th set and
Tv denote the remaining N−nv observations. Vv and Tv represent the v-th
validation and training set, respectively. Estimate the model parameters
Pk based on the training sample Tv and denote the parameter estimates
by Pv

k . Compute the average KL-divergence on the validation sample Vv:

θ̂(k)v = −
∑
i∈Vv

1

nv

log Pr(Xi | Pv
k ),

– Compute θ̂(k) =
∑V

v=1 θ̂(k)v/V .

• STEP III: Report k̂ = argmin θ̂(k) as the best model chosen by the likelihood-
based cross-validation.
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Depending on the fold V and the training procedure, cross-validation is known
to be a computationally intensive procedure. van der Laan et al. (2003) compare
the practical performance of various fold cross-validation schemes in the context of
mixture of multinomials and illustrate that 2-fold performs comparably with other
fold schemes. Hence, we use 2-fold cross-validation in our application.

4 Simulation studies

We performed simulation studies to investigate various properties of our proposed
method COMODE using c.oops and c.zoops models for the identification of struc-
tured motifs. We compared the results with those obtained by the standard oops and
zoops methods. We will present the results for these four different models in three
sections since each simulation study addresses a different question. In these simula-
tions, COMODE obtains the maximum likelihood estimates of the parameters using
the EM algorithm as described in section 3.2.1 since we used few short sequences.

4.1 Detection of motifs with low information content

The main goal in this simulation study is to assess the performance of COMODE
when the motif appears as a weak signal in the data but has a characteristic infor-
mation content profile. For this purpose, we generated N = 30 sequences of length
L = 100 from an i.i.d. background model and inserted an instance of a motif with
an information content profile given in the sequence logo of Figure 4 in a varying
percentage of the sequences. Sequence logos are a way of visualizing the information
content profile together with the sequence consensus. The height of each nucleotide
letter is proportional to the probability of that nucleotide at that position and the
total height represents the information content at that position.

As mentioned previously, the EM algorithm returns estimated location posterior
probabilities of the sequence sites, P (Yi,l = 1 | Xi, P̂), i ∈ {i, · · · , N}, l ∈ {1, · · · , Li−
W + 1}, where P̂ is the final estimate of the model parameters. These estimated
location posterior probabilities are effective in identifying the most likely location of
the motif in each sequence. Let Kb denote the true set of motif sites in sample b and
let K̂b denote the set of predicted motif sites in sample b. As a performance measure
we use the percentage of the true sites that are predicted by the used method (i.e.,
c.zoops, c.oops, oops or zoops), 100×|Kb∩ K̂b|/|Kb| (percentage sensitivity) and also
allow the estimated sites to deviate from the corresponding true sites by at most 3
base pairs.

We have explored three different information content profiles with COMODE.
These are as follows:
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Figure 4: Weak structured motif. Sequence logo of a structured motif with low infor-
mation content.

• c.zoops-I uses a piecewise linear information content profile (mirror image of
Figure 3). This introduces two additional parameters θ1 and θ2 that need to be
estimated.

• c.zoops-II enforces a particular ordering on the information content across the
positions of the PWM. In particular, it sets the first and last three positions
to have equal information content that is greater than the information content
of the middle positions. The middle positions are forced to have the same
information content. Constraints are enforced as orderings on the information
contents of the specific positions and no extra parameters are introduced.

• c.zoops-III uses a piecewise linear information content profile (as in Figure
3). Note that this profile is also the mirror image of the profile c.zoops-I and
requires estimation of two extra parameters, namely θ1 and θ2.

Among these three profiles, c.zoops-I and c.zoops-II roughly match the information
content profile implied by Figure 4 and c.zoops-III is a misspecified profile.

We firstly observe some general interesting results. When all the sequences have
a motif occurrence (F = 100%), oops and zoops and similarly c.oops and c.zoops
perform virtually the same. This was also observed by Bailey and Elkan (1995a) for
oops and zoops, and it is an important observation since it practically means that
going for the bigger zoops model is not causing any loss in the prediction power.
When the proportion of sequences with the motif gets smaller, zoops and c.zoops
outperform the corresponding oops versions, however at F = 75%, c.oops performs
as well as zoops since it is incorporating structure information.

In Figure 5, we present boxplots of the performance measures over 100 datasets for
zoops and c.zoops models. At F = 100%, both c.zoops-I and c.zoops-II are performing
dramatically better than zoops which indicates that even though the motif signal is
weak, incorporating knowledge about the information content profile (supervising
the search) helps to discriminate it from the background. Moreover, c.zoops-I and
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Figure 5: Detecting weak structured motifs. Boxplot of the percentage of true sites
predicted by zoops method and c.zoops method with different profiles as the percent-
age of the sequences with the motif occurrence decreases. The average sensitivity
decreases as the number of sequences with the motif decreases in the dataset.
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c.zoops-II remain superior to zoops as F decreases. Additionally, the performances
of c.zoops-I and c.zoops-II are not significantly different which suggests that there
might not be much sensitivity to the different profile types in the same class, i.e., in
the high-low-high profile class in this example of weak binding sites.

All methods except c.zoops-III had high specificity (between 0.92 and 0.95) and
typically did not predict sites on sequences which did not have a motif occurence. As
expected, c.zoops-III performs the worst since the information content profile it uses
for the search does not match with the true information content profile at all. We
have applied 2-fold likelihood-based cross-validation to choose among these 4 models
at F = 100%. Out of 100 datasets, c.zoops-I was selected 61 times and c.zoops-II
was selected 39 times.

4.2 Performance in the presence of a competing unstruc-
tured motif

It is quite common for biological sequences to share common motifs which are not
biologically very interesting along with the biologically interesting motifs. In a way,
the one or zero motif per sequence assumption is over simplistic and the underlying
model of the sequences is often misspecified. For this reason, it is important to assess
how in practice the simple model responds to misspecifications.

To mimic such a situation, we have extracted 14 ABF1 sites from the Promoter
Database of Saccharomyces cerevisiae (SCPD) (Zhu and Zhang, 1999). We inserted
these sites (structured motif with the sequence logo given in 6) into 14 sequences of
length L = 100 that were generated from an i.i.d background. A column permuted
version of these sites (unstructured motif with the sequence logo given in Figure 7)
were also inserted into each of the sequences. Note that by permuting the columns of
a PWM, we are not changing the total information content but just perturbating the
structure of the information content profile. We applied c.zoops employing a piecewise
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ABF1 PWM
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muted ABF1 PWM

linear information content profile (mirror image of Figure 3) together with zoops.
Boxplots of the performance measures over 50 such datasets are given in Figure 8.
We observe that, as expected, c.zoops is performing substantially better than zoops.
Since zoops is an unsupervised method, it finds the structured motif as the maximum
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Figure 8: Sensitivity in detecting structured motifs in the presence of a competing
unstructured motif. Boxplot of the percentage of true predicted sites over 50 datasets
for zoops and c.zoops models when the sequences contain an unstructured (column
permuted ABF1 site) and a structured motif (ABF1 site).

likelihood estimate in half of the datasets and finds the unstructured motif in the
other half, whereas c.zoops almost always finds the structured motif (about 95% of
the time). Similar result holds when oops and c.oops are compared. This is a nice
property of the constrained models since it implies that supervising is working in
the direction that it should even though the imposed piecewise linear information
content profile is just an approximation to the true information content profile. This
concludes that c.oops and c.zoops are robust against model misspecification and they
successfully search for motifs of specific information content profiles.

4.3 Relative efficiency comparisons

In this last simulation study, we compare the small sample size performances of the
four methods. Sequences in the simulated datasets have only a structured motif with
the information content profile given in Figure 3, and the percentage of the sequences
with the motif are varied. This simulation model is more realistic since the datasets
generated mimics the biological datasets. We generated B = 400 datasets of each with
N = 50, sequences of length L = 100. We varied the percentage of sequences with the
motif in the set, F ∈ {100, 75, 50, 25}. Let P̂o,b, P̂zo,b, P̂c.o,b, P̂c.zo,b denote the PWM
estimates obtained in sample b by oops, zoops, c.oops, and c.zoops, respectively. We
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Figure 9: Mean squared error comparisons. Boxplots of the squared euclidean distance
of PWM estimates obtained by oops, zoops, c.oops, and c.zoops methods over B =
400 datasets as the percentage of sequences (F ) with the structured motif decreases.

will refer to the (j, w)-th entry of these matrices as p̂k,b
wj , k ∈ {o, zo, c.o, c.zo}. Define

MSEk
b =

W∑
w=1

J∑
j=1

(p̂k,b
wj − pwj)

2, k ∈ {o, zo, c.o, c.zo},

as the squared euclidean distance of the estimated PWM estimated by method k
to the true motif PWM, PW , in sample b. Note that 1/B

∑B
b=1(p̂

k,b
wj − pwj)

2 is the
estimated mean squared error for position (j, w) of the PWM obtained by method
k. The ratio of the estimated mean squared errors of the two estimates reflects the
relative efficiency of the two estimators, which then can be interpreted as the the
ratio of sample size requirements for both methods to achieve the same accuracy.
When comparing zoops and c.zoops, we find that the estimated relative efficiency
of the two can be as high as 8 for some positions of the PWM, which then implies
that zoops needs 8 times as many sequences as c.zoops to achieve the same accuracy
at that particular position. To summarize the results in a more compact form we
present boxplots of MSEk

b for each method as F varies in Figure 9. The mean
1/B

∑B
b=1 MSEk

b can be interpreted as a collapsed mean squared error.
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Note again that oops and zoops, and c.oops and c.zoops perform exactly the same
at F = 100%. The constrained motif methods c.oops and c.zoops perform better than
the unconstrained motif methods at this percentage. As F decreases, c.zoops become
superior to all other methods. The main conclusion of this simulation study is that
c.zoops provides more accurate PWM estimates than the other 3 methods when the
motif of interest is a structured motif and it occurs only in a small proportion of the
sequences in the dataset.

4.4 Misspecification of the information content profile

As emphasized throughout this paper, the method we are proposing is a supervised
method for motif searching which uses additional information about motifs that may
not be utilized by other available methods. However, if this information is flawed,
then obviously the findings of the method will be flawed, too. We have investigated
a few cases of information content profile misspecification including enforcement of
a piecewise linear low-high-low information content profile as in Figure 3 when in
fact the true information content profile is almost random. In this particular case,
the resulting PWM had an almost flat information content profile which is still an
acceptable example of the profiles given in Figure 3. The typical behavior of the
method under such misspecifications is to project the true PWM onto the space
defined by the enforced constraints. If one does not have a clear idea about the
structure of the motif, different motif models including the unconstrained motif model
can be applied and the best one could be selected by likelihood-based cross-validation
as described in subsection 3.3.

5 Data analysis

5.1 Comparisons with MEME and BioProspector on tran-
scription factor binding data of Saccharomyces cerevisiae

We analyzed the binding data from Lee et al. (2002) for three transcription factors:
ARO80, SWI5, and BAS1. In Lee et al. (2002), the sequences of intergenic regions
bound with p-values less than 0.001 for each transcription factor were used in motif

search by MEME. MEME was run using the zoops model with a 6th order Markov
background model and a motif width range of 6 to 18 bases. For each transcription
factor, two motifs were reported. The first motif reported is selected based on the
likelihood ratio test statistics and the second motif reported is based on a specificity
score described in Hughes et al. (2000). The details of the final selection criteria
are available in the supplementary material of Lee et al. (2002). We specified the
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following information for supervising the motif search for each transcription factor:

• ARO80: a zinc binuclear cluster - probably bi-modal (3 bp conserved in each
region).

• BAS1: a tryp cluster - probably one main conserved region (5-6 bp) possibly
with smaller sub-peaks.

• SWI5: a C2H2 zinc finger - probably one main conserved region (5-6 bp) possibly
with smaller sub-peaks.

We formulated this information into constraints as in Figure 10. ARO80 has two
high information regions and a low information region whereas BAS1 and SWI5 have
a single high information region. More specifically, in ARO80, positions {1, · · · , w1}
and {w2, · · · , W} are enforced to have information content at least as large as some
θ1 and θ3 and the middle positions are enforced to have information content at most
θ2. Similarly, for SWI5 and BAS1, the information content of all positions is enforced
to be at least as large as some θ4 and θ5. The summary of the constraints employed
and the resulting number of models are given in Table 3.

w

θ2

Information content profile for ARO80

IC(w)

ww1 w2

IC(w)
θ1 θ3

Information content profile for BAS1, SWI5

θ4, θ5

Figure 10: Constraint formulation for the selected transcription factors.

In the analysis of SWI5, we encountered many A repeats in the results despite the
higher order Markov background model used. To eliminate such repeats without
physically altering the sequences, we added the following consecutive sum constraint
into our model

w=k+4∑
w=k

pw1 ≤ 5× 0.5, k = 1, · · · , W − 4. (1)
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Factor Constraints # of different models
ARO80 IC(w) ≥ θ1, w ∈ {1, · · · , w1}

IC(w) ≥ θ3, w ∈ {w2, · · · , W}
IC(w) ≤ θ2, w ∈ {w1 + 1, · · · , w2 − 1} 13× 3× 3
θ1 = θ3 ∈ {0.6, 1.2, 1.8}
θ2 ∈ {0.6, 1.2, 1.8}, w1 = w2 = 3

SWI5 IC(w) ≥ θ4, w ∈ {1, · · · , W} 14∗ × 3
θ4 ∈ {0.6, 1.2, 1.8}
Consecutive sum constraint (1)

BAS1 IC(w) ≥ θ5, w ∈ {1, · · · , W} 14∗ × 3
θ5 ∈ {0.6, 1.2, 1.8}

Table 3: Constraints employed for ARO80, SWI5 and BAS1 motif detection. For each
factor, 13 different motif widths in the range {6, · · · , 18} are considered. The last
column is the different number of models that are used in likelihood-based cross-
validation. ∗ For BAS1 and SWI5, we also consider width of 5.

This constraint enforces any 5 consecutive positions in the PWM to have a total
nucleotide A probability less than 0.5× 5. We chose 5 as the number of constrained
consecutive positions since 5 is the smallest motif width that we used. Note that
this constraint allows at most an A repeat of size 2. The results of our analyses for
these three factors are shown in Table 4 together with MEME (Bailey and Elkan,
1995a) and BioProspector (Liu et al., 2001) results, and the true consensus of the
sites from the literature. BioProspector does not automatically provide a method for
choosing among different motif widths. For this reason, we set the motif width to the
true motif width (from the literature) when using the BioProspector. Additionally,

BioProspector allows the background distribution to be at most 3rd order Markov
model which prevented us from comparing it to our method and MEME in a fair
manner. BioProspector was run using the following options

ARO80: BioProspector -i infile -f yeast_int.bg -W 4 -w 4 -G 7

-g 7 -a 1 -r 25 -o outfile &

BAS1: BioProspector -i infile -f yeast_int.bg -W 7 -a 1 -r 25

-o outfile &

SWI5: BioProspector -i infile -f yeast_int.bg -W 6 -a 1 -r 25

-o outfile &

BioProspector allows the smallest motif width to be 4 bases. Hence, when searching
for ARO80 sites, we asked for two blocks of size 4 instead of two blocks of size 3.
COMODE uses 2-fold likelihood cross-validation for model selection. BioProspector
and COMODE identify the true binding site for BAS1 whereas MEME seems to be
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stuck at some local maximum with T repeats and overfits the motif width. COMODE
overfits the motif by one base, however the resulting motif includes the true consensus.
For ARO80, COMODE again overfits the motif by one base, however the rest of the
consensus matches closely to the true consensus. BioProspector identifies one of
the conserved blocks correctly and gives one base mismatch in the second block.
MEME seems to be getting a completely different motif than the true consensus
with the likelihood ratio test based scoring whereas the specificity score identifies a
long motif with two blocks [CCG,SSG] that matches to the true consensus. In the
analysis of SWI5, all the three methods generate different results. MEME gets stuck
at CA repeats and Bioprospector results in 3 different binding sites that do not match
to the true consensus. When COMODE is used without the additional cumulative
sum constraint given in equation (1), it reports an A repeat site. However with this
additional constraint, the resulting binding site matches closely to the true consensus.
In summary, MEME succeeds in one, BioProspector in two, and COMODE in three
of the examples. In these examples BioProspector was provided the true motif length
and COMODE used 2-fold likelihood based cross-validation. COMODE seemed to
slightly overfit the motifs by choosing a one base pair longer motifs, however the
chosen motif contained the true consensus.

These limited real data examples show that simple constraints on the information
content profiles might be used to supervise motif searches. The three transcription
factors we analyzed have sites that can be represented by simple constraints and
the three methods (MEME, BioProspector and COMODE) work competitively on at
least two of these. However, COMODE has the generality of allowing any type of
constraints. BioProspector works pretty well in identifying two conserved blocks by
assuming that these two blocks are separated by background sites. However, there are
biological examples where some of the positions between the blocks are well conserved
and different than the background sites. In such cases, COMODE has the flexibility
to provide a more precise information content profile for the binding site. We also
note that the constraints employed by COMODE in these three examples do not
result in estimating extra information content profile specific parameters. Instead,
the additional complexity comes from having to compare more motif models with
different size parameter spaces.

5.2 Application to even skipped gene of Drosophila

The current version of COMODE implements motif detection with the c.oops and
c.zoops models, which allow at most one occurrence of the motif of interest in each
input sequence. However, there are many biological examples where a long sequence
contains multiple copies of multiple binding sites. We applied our method on two
of the cis-regulatory regions of the even skipped (eve) gene of Drosophila. These
cis-regulatory regions are stripe 2 and stripe 3-7 which are 670 and 511 base pairs
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long, respectively. Multiple transcription factors are observed to bind to these cis-
regulatory regions and there might be more than one site for each of these factors
(Davidson, 2001). We treat each of these cis-regulatory modules independently and
identify binding sites for each of them separately. In this application, we have to
account for the fact that we have a long stretch of regulatory region with multiple
motif occurrences. One empirical way to deal with this phenomena using the c.zoops
model is to divide the regulatory module into subsequences of cut length U base pairs
and call the new dataset DU . Several values of the cut parameter U are considered
in this application. We then run c.zoops on the new dataset DU and search for
motifs of high-low-high or low-high-low information content profiles (Figure 3).
We repeat the analysis with motif widths of 8, 9, 10, 11, 12. The explicit formulation
of the M-step for this constrained model is given by the maximization problem (A).
As mentioned previously, starting values of the SQP algorithm are based on the initial
likelihood approach and we use 100 starting starting values with the highest initial
likelihood. w∗ of each width W motif is set to dw/2e+1, and π, the proportion of the
sequences with the motif occurrence, is set to 0.5. We perform the analysis for both
stripe 2 and stripe 3-7 in this fashion. As a result of this analysis, we firstly observe
that the motif estimates obtained for various motif widths are extensions of each
other (i.e., motif estimate obtained for W=12 extends motif estimate obtained with
W = 8). Further selection of the motif width is performed using the likelihood based
cross-validation method with 2-fold cross-validation scheme. Secondly, the results
obtained for various cut lengths turn out to be quite similar in the sense that about
96% of the sites identified with different cut lengths overlap. The sequence logos
obtained by aligning the positions with posterior location probability greater than
0.7 are given in Figures 11 and 12.
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The motif identified on stripe 2 is the Kruppel (Kr) binding site and the site identified
on stripe 3.7 is the Hunchback (Hb) binding site. Most of the sites identified on
stripe 2 and stripe 3-7 correspond to experimentally verified targets of Kr and Hb
(comparisons were made with the compiled Figure 5 of Berman et al. (2002)) on these
stripes. In stripe 2, 4 out of 6 experimentally verified Kr sites are correctly identified.
In stripe 3-7, 7 out of 11 experimentally verified sites were correctly identified. These
sites together with other predicted sites are listed in Tables 5 and 6; experimentally
known sites are marked with ∗. The results summarized for stripe 2 and stripe 3-7
correspond to cut lengths U = 100 and U = 30, respectively.

Current available methods use different heuristics to deal with multiple occur-
rences of a single motif in a single sequence since exact methods increase the com-
putational complexity a great deal. MEME (Bailey and Elkan, 1995a) deals with
multiple occurrences of the same motif by modifying the E-step of the EM algorithm.
In the E-step, MEME sets

N∑
i=1

Li−W+1∑
l=1

Pr(Yi,l = 1 | Xi,P) = NSITES,

where each Pr(Yi,l = 1 | Xi,P) is between 0 and 1 and NSITES is a user sup-
plied value referring to the expected number of occurrences of the motif in all of the
sequences under consideration. Under this constraint,

∑Li−W+1
l=1 P (Yi,l = 1 | Xi,P)

for any given sequence does not necessarily sum to 1. BioProspector (Liu et al.,
2001) allows multiple occurrences of the same motif using a heuristic called threshold
sampling, where more than one subsequence is sampled from each sequence based on
some rules.

In the analysis of cis-regulatory region of the even skipped gene of Drosophila,
we used a cutting heuristic to deal with multiple occurrences of the same motif and
cut each sequence into subsequences of length U to form a new dataset to apply
COMODE. We did not observe any apparent sensitiveness of the results to the cut
length U ; however cut length is another parameter that can be cross-validated. In
essence, different cut lengths index different models by allowing different number of
motif occurrences in the dataset.

6 Discussion

We have introduced a novel supervised motif finding method, COMODE, to detect
motifs with specific structural constraints. This method is motivated by the obser-
vation that transcription factor binding sites, especially in bacteria genomes, have
characteristic information content profiles that distinguish them from random pat-
tern repeats. Through the classification of motifs of DNA binding proteins, a catalog
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of information content profiles could be obtained. Consequently, the search for reg-
ulatory motifs could be focused by utilizing the specific characteristics of the motifs.
Our method incorporates structural constraints on the motifs by enforcing constraints
on either the information content profile or specific parameters of the corresponding
PWM. Therefore, parameters of the resulting PWM lie in a smaller space than the
parameter space of unconstrained PWMs. Through simulations, we compared our
method with simple unconstrained motif finding methods (Lawrence and Reilly, 1990;
Bailey and Elkan, 1994). Advantages of COMODE include improved performance in
detecting motifs with weak structured information content profiles, better small sam-
ple size performance in PWM estimates (measured by mean squared error). When
there is no prior knowledge about the searched motif in a dataset, this method can be
applied using various information content profiles, including the unstructured infor-
mation content profile and the best fit to the data can be selected by likelihood-based
cross-validation. We have illustrated how this approach can be useful in a simulation
study. In general, this procedure can be computationally intensive and perhaps in
the case of no supervising knowledge an initial run with the unconstrained model
might be more practical. If the unconstrained model does not produce satisfactory
results then the constrained approach can be applied over a selected class of infor-
mation content profiles of increasing complexity (perhaps just bimodal and unimodal
information content profiles at first) utilizing all the available biological knowledge.

One advantage of the general constraint framework over methods that use a higher
order Markov chain for modeling the PWMs is the smaller number of parameters
that needs to be estimated. This relates to the issue of accuracy in the parameter
estimates when the sample size is small. Cowell et al. (2002) proposed a method for
identifying the correlation structure of a binding site from its given set of instances.
Their method seems to be successful at determining the positions that are important
and the dependencies among the positions of the binding sites. In their particular
application, it is illustrated that their method of exploring the relationships among
the positions of the binding sites provides a better representation for the binding site
PWM than a 0-th order or a 1-st order Markov chain model. Although, Cowell et al.
(2002) do not suggest a method for searching for binding sites with specific characters
in unaligned sequences, their method can be used on available binding site data to
formulate various structures for the binding sites. Once these structures are available,
they can be easily incorporated in our method of constrained search.

We have compared our method with commonly used methods such as MEME
(Bailey and Elkan, 1995a) and BioProspector (Liu et al., 2001) on limited examples.
We observed that our method successfully utilizes the available information. The
method described here is one specific way of incorporating biological knowledge into
motif finding and it is not based on heuristics. As a result the computational com-
plexity is higher compared to unsupervised methods. However, the formulation of
the constraints, in general, are efficient since they mostly correspond to searching a
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smaller parameter space for the PWMs and/or estimating a few extra parameters.
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Appendix

ABF1 sites

The ABF1 sites that are used in competing unstructured motif simulations are given
in Table 7. SCPD reports 23 ABF1 sites under the get sites section, however the
reported position specific weight matrix of the section get matrix only incorporates
14 of these sites. Thus, we have used only the sites that contribute to the specified
PWM.

Software

The described methodology is implemented in the C programming language in a
software package called COMODE. Maximization steps are performed using NAG
Fortran subroutine EOUCF. The major inputs of the program are

1. Set of sequences to search for motif.

2. Motif width.

3. Background distribution file. (A C function to estimate the parameters of the
user supplied order of Markov chain from a given data set is also provided.)

4. A C function evaluating the user supplied constraints and their first derivatives
with respect to the PWM parameters (and other parameters if applicable) for a
given PWM. This C function will change depending on the type of constraints
employed. We have assembled a library of common types of constraints.
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Moreover, a function implementing V−fold likelihood based cross-validation to choose
among different motif widths and information content profiles is also available. This
version, using NAG library, is available from the first author (sunduz@stat.berkeley.edu).
A NAG free version in matlab is in progress.
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BAS1

METHOD MOTIF
MEME TTTTYYTTYTTKYNTYNT/ANRANRMAARAARRAAAA

CSNCCAATGKNNCS/SGNNMCATTGGNSG
BIOPROSPECTOR TGACTC/GAGTCA

TGACTC/GAGTCA
TGACTC/GAGTCA

COMODE TGACTCY/RGAGTCA
LITERATURE TGACTC/GAGTCA

ARO80

METHOD MOTIF
MEME YKYTYTTYTTNNNNKY/RMNNNNAARAARARMR

TRCCGAGRYWNSSSGCGS/SCGCSSSNWWRYCTCGCYA
BIOPROSPECTOR (TTCG/CGAA, TCGG/CCGA)

(CCGA/TCGG, CGAA/TTCG)
(ATAA/TTAT, AAGC/GCTT)

COMODE WCCGMSNNNNNCCG/CGGNNNNNSKCGGW
LITERATURE CCGNNNNNNNCCG/CGGNNNNNNNCGG

SWI5

METHOD MOTIF
MEME CACACACACACACACACA/TGTGTGTGTGTGTGTGTG
BIOPROSPECTOR CATACA/TGTATG

TGTATG/CATACA
TGTGTG/CACACA

COMODE RCCAGCR/YGCTGGY
LITERATURE ACCAGC/GCTGGT

Table 4: Summary of results for ARO80, BAS1, and SWI5 motif detection. Resulting
motifs and their reverse complements are given together, i.e., TGACTCY/RGAGTCA rep-
resents the regulatory motif TGACTCY and its reverse complement RGAGTCA for BAS1.
The top 3 motifs are reported for BioProspector. The true sites for BAS1, ARO80 and
SWI5 are from Daignan-Fornier and Fink (1992); Iraqui et al. (1999); Brazas et al.
(1995), respectively. The degenerate nucleotide symbols are as follows: R={A,G},
Y={C,T}, M={A,C}, K={G,T}, S={C,G}, W={A,T}, N={A,C,G,T}.
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stripe 2 gctGGCCTGGTTTCtcg
stripe 2 cgcAGTTTGGTAACacg
stripe 2 cgaGACCGGGTTGCgaa*
stripe 2 cttGACTTGGAATCcaa
stripe 2 gcgAACTGGGTTATttt*
stripe 2 ttgAGCCGGGCAGCagg
stripe 2 tcaAAACGGGTTAAgct*
stripe 2 gttAATTGCGTTGCctg
stripe 2 cctGACTTCGCAACccg
stripe 2 ggcAAACGGATTAAcac*
stripe 2 cagTACCGGGTAACcag

Table 5: Aligned sites with U = 100, W = 11 in stripe 2 . Sites with posterior
location probability ≥ 0.7. * refers to experimentally verified sites.

stripe 3.7 gatCAGTTTTTTGTttt*
stripe 3.7 cgaCCGATTTTTGTgcc*
stripe 3.7 ttaCGGTTTATGGCcgc
stripe 3.7 cccAGCTTCTTTGTtcc
stripe 3.7 atgCAGATTTTTATggg*
stripe 3.7 atcACGTTTTTTGTtcc*
stripe 3.7 cgcTAGTTTTTTTCccc*
stripe 3.7 tctAATTTTTTAATtct*
stripe 3.7 gacAAGGTTATAACgct
stripe 3.7 atcCGTTTGTTTGTgtt
stripe 3.7 attCACGTTTTTACgag*

Table 6: Aligned sites with U = 30, W = 11 in stripe 3-7. Sites with posterior
location probability ≥ 0.7. * refers to experimentally verified sites.
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TCTCTCGCAACG
TCTCTCGCAACG
TCACGTCACACG
TCACCGCGAACG
TCATAAAGCACG
TCACTAAAGACG
TCAAAATTAACG
TCACTGTACACG
TCACTAACGACG
TCCCCATTAACG
TCACGATACACG
TCATGCGCTACG
TCATGCGCTACG
TCAAATAACAGA

Table 7: Aligned ABF1 sites extracted from the Promoter Database of Saccharomyces
cerevisiae (SCPD). 14 ABF1 sites (out of 23 reported sites in SCPD) used in con-
structing the position specific weight matrix in SCPD.
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